ASSESSING BIODIVERSITY OF PHYTOPLANKTON COMMUNITIES FROM OPTICAL REMOTE SENSING

Dariusz Stramski, <u>Julia Uitz</u>*, and Rick A. Reynolds

Scripps Institution of Oceanography (SIO), UCSD, La Jolla CA *Now at Laboratoire d'Océanographie de Villefranche (LOV), France

Project objectives and strategy

Diversity of phytoplankton from optical remote sensing

1. Utilize current Chlbased approach

2. Explore the potential of hyperspectral approach

1. Chl-based approach

Introduction

- Importance of the Mediterranean Sea
 - Considered as a small-scale model of the world ocean (Bethoux et al. 1999)
 - Identified as a "hotspot" for climate change (MerMex group 2011)

- Recent advancements in the field of remote sensing
 - New procedure for correcting ocean color-derived Chl_{surf} (Morel and Gentili 2009)
 which is significantly overestimated by standard algorithms
 - New algorithms for discriminating phytoplankton groups from ocean color (e.g. Alvain et al. 2005; Uitz et al. 2006; Bricaud and Ciotti 2006; and many others) and estimating their contribution to total primary production (Uitz et al. 2008; 2010)
- Objective of the study
 - Combining novel approaches with 10-year SeaWiFS time series of Chl_{surf}
 - To reassess current estimates of total primary production
 - To propose first estimates of group-specific primary production

1. Chl-based approach

Method

Morel Morel

Morel and Gentili (2009)

Corrected Chl_{surf}

- 3 major phytoplankton groups
 - Micro (diatoms and dinoflagellates)
 - Nano (prymnesiophytes)
 - Pico (prokaryotes and picoeukaryotes)
- From the time series of group-specific primary production we computed
 - Annual climatology
 - Seasonal climatological cycle within 5 ecological regimes (clusters)

<u>Distribution of the 5 clusters defined by</u> <u>D'Ortenzio and Ribera d'Alcalà (2009)</u>

Seasonal cycle of total primary production

- C1-C3: Ultra-oligotrophic and oligotrophic waters
 - Lowest P_{tot} rates of the entire basin
 - Maximum in June (0.24 g C m⁻² d⁻¹)
 - Likely results from increase in surface PAR
- C5: Ligurian Sea and Gulf of Lion
 - Prominent bloom in April (0.42 g C m⁻² d⁻¹)
 - Fueled by nutrient enrichment following deep winter mixing
- C4: Several confined areas of increased productivity
 - Two maxima of similar magnitude (0.27 g C m⁻² d⁻¹)
 - Characterized by complex physico-chemical processes

Seasonal cycle of group-specific primary production

- Seasonal cycle of P_{nano} is very similar to that of P_{tot}
- Nano make a dominant contribution to P_{tot} throughout the year in each cluster
- Relative contributions of micro and pico vary with time and ecological regime
 - Relatively stable for C1 and C2
 - More variable for C3-C5 with C5 showing the largest dynamic of the five clusters
 - Contribution of pico exceeds that of micro most of the year in the most oligotrophic conditions
 - Exception during a time period that coincides with the seasonal bloom
 - For C5 P_{micro} (27-38%) is more important than P_{pico} (20-27%) during a long time period of February-May

1. Chl-based approach

Conclusions

- Annual total primary production can be twice lower than previously estimated
- First climatology of phytoplankton group-specific primary production in the Mediterranean Sea
- Significant contribution to our ability to understand and quantify marine carbon cycle with implications for carbon export
- Key elements required to calibrate/validate new biogeochemical models
- Benchmark for monitoring responses of marine pelagic ecosystems to climate change

Data

- BIOSOPE: Biogeochemistry and Optics South Pacific Experiment
- October-December 2004
- Broad range of trophic conditions
 - In the South Pacific Subtropical Gyre Chl_{surf} is 0.02 mg m⁻³
 - In the upwelling off Chile Chl_{surf} is 3 mg m⁻³
- Data
 - HPLC-determind phytoplankton pigments
 - Spectra of $a_{ph}(\lambda)$ with a 2 nm-resolution

Diagnostic Pigments	Taxonomic Association
Fucoxanthin	Diatoms
Peridinin	Dinoflagellates
19HF and 19BF	Prymnesiophytes
Alloxanthin	Cryptophytes
Chlorophylls b	Chlorophytes Prochlorophytes
Zeaxanthin	Cyanobacteria

<u>Utilization of the diagnostic pigments to infer</u> phytoplankton community composition

2. Hyperspectral approach

Method

Classification based on pigments and $a_{ph}(\lambda)$

- Cluster #1: Upwelling stations with a large contribution of diatoms
- Cluster #2: Stations nearby Marquesas Islands and EGY stations dominated by prymnesiophytes
- Cluster #3: Most oligotrophic stations dominated by pico-eukaryotes and cyanobacteria

Only 2 stations misclassified (St21 and EGY5)

Stations	DP
UPW1-3	Fuco > Hex
UPX1-2	TChlb > Fuco
St17-18, MARQ1	Hex > Fuco
EGY2-5, MARQ2-4, St19-20	Hex > Zea
GYR2-5, HNL1-2, St06-08, St12-15, St21	Zea > Hex
St01-05, St11, NUK	Zea > DVChla

<u>Grouping of the stations based on the ratio of 2</u> <u>dominant diagnostic pigments to Chl</u>

Classification of the stations based on anh (A)

Conclusions and perspectives

- Spectra of phytoplankton absorption provide similar classification as pigment-derived phytoplankton composition
- Preliminary results indicate significant potential of hyperspectral optical approach for
 - Discriminating different marine phytoplankton assemblages
 - Monitoring phytoplankton diversity in the ocean, especially under non-bloom conditions which are the most challenging
- We are currently working to include $a_{ph}(\lambda)$ and pigment data from cruise ANT-26 onboard R/V Polarstern in the Atlantic Ocean
- Further explore the potential of the hyperspectral approach by analyzing the $R_{rs}(\lambda)$

Project-supported publications

- Uitz J., H. Claustre, B. Gentili, and D. Stramski (2010), Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations, *Global Biogeochemical Cycles*, 24, GB3016, doi: 10.1029/2009GB003680.
- Torrecilla E., D. Stramski, R. A. Reynolds, E. Millán-Núñez, and J. Piera (2011), Cluster analysis of hyperspectral optical data for discriminating phytoplankton pigment assemblages in the open ocean, *Remote Sensing of Environment*, 115, 2578-2593.
- Uitz J., D. Stramski, B. Gentili, F. D'Ortenzio, and H. Claustre (2012), Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations, *Global Biogeochemical Cycles*, in press.